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Abstract

Transcriptional and post-transcriptional regulation of gene expression is of fundamental im-

portance to numerous biological processes. Nowadays, an increasing amount of gene regu-

latory relationships have been documented in various databases and literature. However, to

more efficiently exploit such knowledge for biomedical research and applications, it is ne-

cessary to construct a genome-wide regulatory network database to integrate the informa-

tion on gene regulatory relationships that are widely scattered in many different places.

Therefore, in this work, we build a knowledge-based database, named ‘RegNetwork’, of

gene regulatory networks for human and mouse by collecting and integrating the docu-

mented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and

target genes from 25 selected databases. Moreover, we also inferred and incorporated po-

tential regulatory relationships based on transcription factor binding site (TFBS) motifs into

RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally

observed or predicted transcriptional and post-transcriptional regulatory relationships, and

the database framework is flexibly designed for potential extensions to include gene regula-

tory networks for other organisms in the future. Based on RegNetwork, we characterized the

statistical and topological properties of genome-wide regulatory networks for human and

mouse, we also extracted and interpreted simple yet important network motifs that involve

the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an

integrated resource on the prior information for gene regulatory relationships, and it enables

us to further investigate context-specific transcriptional and post-transcriptional regulatory

interactions based on domain-specific experimental data.
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Introduction

Gene regulatory events play crucial roles in a variety of

physiological and developmental processes in a cell, in

which macromolecules such as genes, RNAs and proteins

are coordinated to orchestrate operative responses under

different conditions (1). Therefore, substantial efforts have

been made to reveal gene regulatory network structures

from transcriptomic profiling datasets generated by, e.g.

microarray (2), ChIP-Seq (3) and RNA-Seq (4). Although a

number of data-driven reverse engineering techniques were

previously proposed to identify regulatory relationships be-

tween regulators and their targets [e.g. TFs and down-

stream genes (5)], the low accuracy of these existing

methods due to the curse of dimensionality significantly

limits their applications in practice (6). However, several

recent studies suggested a promising alternative for iden-

tifying regulatory network structures by combining the

high-throughput transcriptomic profiling data with the

prior knowledge on known or predicted regulatory

relationships available in various databases and literature

(7–9). For instance, the framework in (9) can significantly

improve the accuracy of regulatory relationship identifica-

tion by appropriately incorporating prior knowledge into

the transcriptomic profiling data. Also, the results from

several other independent studies suggest that the incorpor-

ation of prior knowledge can help to better identify the

context-specific regulatory interactions corresponding to

certain phenotypes (7–12). It is thus of paramount interest

to collect, organize and share such prior information with

the related communities for future biomedical research and

practice.

Prior knowledge on gene regulatory relationships from

multiple sources (e.g. genomic context, conserved gene co-

expression, knockout or high-throughput experiment)

spreads out in various databases and literature. It is desir-

able to develop a unified database and provide users with

the necessary tools for information access or retrieval.

However, only limited efforts such as RegulonDB for

Escherichia coli (13) have been previously made towards

this goal, and the works on the genome-wide regulatory re-

lationships for other species are still lacking so far.

Considering the overwhelming importance of human and

mouse in biomedical studies, we build a database of gen-

ome-wide regulatory relationships for the two species. It

should be noted that, besides the experimentally observed

or discovered regulatory relationships curated in public

databases such as TRED (14) and KEGG (15), the TF bind-

ing site (TFBS) information for TF–gene regulatory inter-

action potentials (16, 17) can also be used to predict new

transcriptional regulatory relationships between TFs and

genes by matching the binding motifs in DNA sequences.

Thus, such predictions based on TFBS are also integrated

into our database to provide a more comprehensive land-

scape of gene regulations. Moreover, to include post-

transcriptional regulatory relationships in the database, we

also consider miRNAs, which are small non-coding RNA

molecules (�22 nucleotides) found in various organisms

(18) and ubiquitously perform crucial roles in post-

transcriptional regulation of gene expression by binding to

the 30 untranslated region of mRNA (19).

Although there exist many computational methods for

deciphering the transcriptional regulatory interactions be-

tween TFs and genes, the integrative analysis considering

both TF and miRNA as regulators is still very limited due

to the lack of a ready-to-use regulatory network database

(20). In recognition of such an emerging need, here we

build a comprehensive database for genome-wide regula-

tory networks at both transcriptional and post-

transcriptional levels for human and mouse by integrating

the documented regulatory relationships from 25 data-

bases. RegNetwork can be freely accessed at http://www.

regnetworkweb.org.

Materials and methods

Data sources

Both transcriptional and post-transcriptional regulatory re-

lationships are important, we thus consider both TFs and

miRNAs as regulators. Figure 1 shows a basic regulatory

circuit involving TF, miRNA and target gene, as well as

the essential steps of transcriptional and post-

transcriptional regulation of gene expression. Note that

the miRNA component is usually missing in most of the

previous studies on reverse engineering of gene regulatory

networks. However, given its important role in the post-

transcriptional regulatory process (18), we believe that it is

necessary to include miRNAs in RegNetwork.

As shown in Figure 1, five types of regulatory relation-

ships among TFs, miRNAs and target genes are considered

in the regulatory network. More specifically, for transcrip-

tional regulatory relationships, ‘TF-TF’ (A) and ‘TF-gene’

(B) interactions are considered; for post-transcriptional

regulatory relationships, the curated and predicted

‘miRNA-gene’ interactions (E) are considered; for inter-

plays between regulators, ‘TF-miRNA’ (C) and ‘miRNA-

TF’ (D) are included. A number of databases contain regu-

latory information for human and mouse, from which we

collect the relevant information and data (e.g. TFs,

miRNAs, TFBS motifs, genes and their annotations).

Table 1 lists the databases we used to build the

RegNetwork.
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Regulatory relationship curation and prediction

Figure 2 illustrates how the databases listed in Table 1 are

used to construct the RegNetwork, and the same proced-

ure in forms of tested computer code is performed for

human and mouse, respectively.

More specifically, for transcriptional regulatory rela-

tionships, we first compile a list of TFs for human and

mouse, respectively, from FANTOM (23), UniProt (41),

TRANSFAC (16) and JASPAR (17). Then, the ‘TF-gene’

interactions documented in TRED and KEGG are directly

deposited in RegNetwork. Moreover, we predict the po-

tential ‘TF-gene’ interactions from the documented TF

binding site (TFBS) motifs in TRANSFAC and JASPAR.

Since TFs regulate the target genes by binding to these ex-

perimentally identified TFBSs, we pair the TFs and genes

by searching the promoter regions from the 5 kb upstream

to 1 kb downstream of the transcription start site (TSS) for

RefSeq (35) genes. Figure 3 illustrates the basic idea of

how to pair a TF with the potential target genes via TFBS.

As an example, TF ‘NR2F1’ has a known TFBS ‘MA0017’,

which is represented by a position weighted matrix, and

the sequence logo at the top-left corner in Figure 3 shows

its nucleotides composition. Screening the promoter re-

gions in the whole genome of human and mouse for this

TFBS, the genes containing ‘MA0017’ in their promoter re-

gions are thus identified as the potential targets of

‘NR2F1’. In general, we retrieve the information of TFBS

conservation tracks from the UCSC Genome Browser (27)

and Ensembl (22) database. Specifically, UCSC’s

tfbsConsSites table contains the location and score of

TFBS conserved in the human/mouse sequence alignment

results. A binding site is considered to be conserved across

the alignment results if its score is no less than the thresh-

old score. The score and the threshold are computed with

A

B

Figure 1. The basic regulatory circuit involving TF, miRNA and target gene (A) and the schematic illustration of the mechanisms of transcriptional and

post-transcriptional regulation of gene expression (B). In total, five types of regulatory relationships are considered among TF, miRNA and target

gene.
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Table 1. The databases used to build the RegNetwork database by collecting knowledge on gene regulatory relationships in

human and mouse

Database Description Species Website Reference Version/ac-

cess date

BioGrid BioGRID is an online interaction repository with

data compiled through comprehensive curation

efforts

Mouse http://thebiogrid.org/ (21) Version

3.2.100

Ensembl Ensembl is to provide a centralized resource for gen-

eticists, molecular biologists and other researchers

studying the genomes of our own species and

other vertebrates and model organisms

Human and

mouse

http://www.ensembl.org (22) Release 71

(March

2013)

FANTOM Functional Annotation Of Mammalian genome and

is an international research consortium to assign

functional annotations to the full-length comple-

mentary DNAs (cDNAs)

Human and

mouse

http://fantom.gsc.riken.jp/ (23) 5 March

2010

GenBank A comprehensive database developed by NCBI,

NIH, which contains publicly available nucleotide

sequences for more than 250 00 formally

described species

Human and

mouse

http://www.ncbi.nlm.nih.

gov/genbank/

(24) 14 August

2012

HPRD HPRD is a curated human protein-protein inter-

action database

Human http://www.hprd.org (25) Release 9

IntAct IntAct is a database system of molecular interaction

data. All interactions are derived from literature

curation or direct user submissions

Mouse http://www.ebi.ac.uk/

intact/

(26) 16 October

2012

JASPAR An open-access database of annotated, matrix-based

transcription factor binding site (TFBS) profiles

for multicellular eukaryotes

Human and

mouse

http://jaspar.genereg

.net/

(17) 12 October

2009

KEGG KEGG is a widely used pathway database resource

for understanding high-level linkage functions and

utilities of biological system

Human and

mouse

http://www.genome.jp/

kegg/

(15) 5 December

2012

Liftover A UCSC tool converts genome coordinates and gen-

ome annotation files between assemblies

Mouse http://genome.ucsc.edu/cgi-

bin/hgLiftOver

(27) 7 March

2012

MicroCosm MicroCosm Targets (formerly miRBase Targets) is a

web resource containing computationally pre-

dicted targets for microRNAs across many species

Human and

mouse

http://www.ebi.ac.uk/

enright-srv/microcosm/

htdocs/targets/v5/

(28) Version v5

MicroT DIANA-microT is a combined computational-

experimental approach predicts mouse

microRNA targets

Human and

mouse

http://www.microrna.gr/

microT

(29) Version v3.0

miRanda miRanda is a miRNA target prediction method

based on dynamic programming algorithm

Human and

mouse

http://www.microrna.org/ (30) Release

August

2010

miRBase miRBase database is a searchable database of pub-

lished miRNA sequences and annotation

Human and

mouse

http://www.mirbase.org/ (31) Release 18

miRecords miRecords is a resource for animal miRNA-target

interactions. The validated targets component is

used, which is a large, high-quality database of ex-

perimentally validated miRNA targets

Human and

mouse

http://miRecords.umn.edu/

miRecords

(32) 25 November

2010

miRTarBase miRTarBase is a database which curates experimen-

tally validated microRNA-target interactions

Human and

mouse

http://miRTarBase.mbc.

nctu.edu.tw/

(33) Release 2.5

(October

2011)

PicTar PicTar is a computational method for identifying

common targets of microRNAs

Human and

mouse

http://pictar.mdc-berlin.de/ (34) 26 March

2007

(continued)
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the TRANSFAC matrices by the TFLOC program (27).

Since the UCSC only implements the TFBS conservation

tracks in human genome, we map the TFBS conservation

information to mouse genome by employing the LiftOver

(27) tool of UCSC. Similarly, Ensemble’s MotifFeatures.gff

table contains the alignment information for the

TFBS element matrix documented in JASPAR [by

MOODS software (42)] for human and mouse. The

chromosomal coordinates of TFBSs can be used to identify

their corresponding genes and the potential regulatory rela-

tionships between TFs and genes can then be established.

To include as many TFs and their interaction targets as

possible in our database, we also consider and include pro-

tein–protein interactions (PPIs) in RegNetwork. We re-

trieve the PPI pairs that contain at least one TF from

HPRD (25), BioGrid (21), IntAct (26), KEGG (15) and

STRING (36). The functional linkages between TF and its

interacting partners indicate putative gene regulations.

Obviously, when a TF regulates the expression of its own

gene, the ‘TF-TF’ self-regulations are also identified. To be

consistent in this process, TFs and genes are represented

using their corresponding NCBI Entrez IDs and official

symbols (24).

For post-transcriptional regulations, the experimentally

validated ‘miRNA–gene’ pairs in human and mouse from

miRTarBase (33), TarBase (37) and miRecords (32) are

directly deposited in RegNetwork. Then, the predicted

‘miRNA–gene’ interactions by one of the five representa-

tive algorithms, i.e. miRanda (30), TargetScan (38),

PicTar (34), MicroCosm (28) and micorT (29), are

included. Similarly, the documented ‘miRNA–TF’ genes

regulatory relationships are directly deposited into

RegNetwork.

The documented ‘TF–miRNA’ regulatory relationships

in TransmiR (39) are also directly imported into

RegNetwork. Then, the potential interactions between TFs

Table 1. Continued

Database Description Species Website Reference Version/ac-

cess date

RefSeq RefSeq provides a non-redundant collection of se-

quences representing genomic data, transcripts

and proteins

Human and

mouse

http://www.ncbi.nlm.nih.

gov/refseq/

(35) 19 May2013

STRING STRING is a database of known and predicted pro-

tein interactions

Mouse http://www.string-db.org (36) Version 9.05

Tarbase Tarbase collectes available miRNA targets derived

from all contemporary experimental techniques

(gene specific and high-throughput)

Human and

mouse

http://www.microrna.gr/

tarbase

(37) Version 5.0

TargetScan TargetScan is an algorithm to predict biological tar-

gets of miRNAs by searching for the presence of

conserved 8mer and 7mer sites that match the

seed region of each miRNA

Human and

mouse

http://www.targetscan.org/ (38) Release 5.2

TRANSFAC Transfac database is a manually curated database of

eukaryotic transcription factors, their genomic

binding sites (TFBS) and DNA binding profiles

Human and

mouse

http://www.gene-regulati

on.com/pub/

databases.html

(16) TRANSFAC

7.0

TransmiR TransmiR is a transcription factor-microRNA regu-

lation database

Human and

mouse

http://202.38.126.151/

hmdd/mirna/tf/

(39) Version 1.2

TRED Transcriptional Regulatory Element Database

(TRED) is an integrated repository repository for

both cis- and trans- regulatory elements in mam-

mals. It contains the curated regulations between

TF and target gene

Human and

mouse

http://rulai.cshl.edu/TRED/ (40) 12 February

2012

UniProt UniProt is a catalog of information on proteins and

it is a central repository of protein sequence and

function

Human and

mouse

http://www.uniprot.org/ (41) Release

July2012

UCSC The University of California, Santa Cruz Genome

Browser is a database of genomic sequence and

annotation data for a wide variety of organisms

Human and

mouse

http://genome.ucsc.edu (27) mm10,

GRCm38

(December

2011)

The ‘Species’ column shows whether the information in a database is available for human, mouse or both. Twenty-five databases are used to build the

RegNetwork and they are ordered alphabetically here, among which 17 of these databases in italic contain the regulatory relationships, and the rest provide other

necessary information (e.g. annotations) for the database construction.
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and miRNA-encoding genes are predicted based on TFBS

information using the similar method for potential ‘TF–

gene’ interactions as described above. In such a way, the

documented and putative regulatory pairs are both

included in RegNetwork. For certain pairs of genes, the

regulator (or target) gene in one database may be labeled

as target (or regulator) gene in another database. We

merged such results and thus the interactions between

these pairs of genes can be bidirectional. That is, we used

an ‘inclusive’ principle to deal with the inconsistency be-

tween the databases. At the same time, we also provide a

link to the original databases for users to check the detailed

information regarding the inconsistency and decide which

result they will believe and use for a particular case.

Finally, we added the degree of confidence for each of the

regulatory interactions by using a three-level labeling ap-

proach (i.e. a ‘high’, ‘medium’ or ‘low’ confidence). More

specifically, the experiment-validated regulations are

tagged with the label ‘high confidence’, the predictions

made by only one algorithm/method are tagged with ‘low

confidence’, and the rest are tagged with ‘medium

confidence’.

Figure 2. The flowchart for RegNetwork construction.

Page 6 of 12 Database, Vol. 2015, Article ID bav095

-
l
``
''
,


Database implementation and web user interface

design

We have developed a web tool of RegNetwork for users to

query and download the regulatory relationships and net-

works. RegNetwork is implemented in Java, JavaScript

and Python together with the PostgreSQL database. All

raw data ETL (Extract, Transfer and Load) are carried out

with Python scripts on the back end. The frontend inter-

face is developed using JSP and JavaScript.

Figure 4 shows the web user interface of RegNetwork.

The regulatory relationship can be searched by various

types of components (i.e. by TF, miRNA or gene in the

regulatory networks), by databases and/or by species

(human or mouse). The interface also provides users the

option to query transcriptional only, post-transcriptional

only or both relationships to further refine the search. It

also allows users, while querying RegNetwork, to specify

and constraint the original databases where the regulatory

Figure 3. Schematic illustration of pairing TF and genes by TFBSs. When the documented TFBS ‘MA0017’ is found in the promoter regions of ‘Gene2’

and ‘Gene 5’, TF NR2F1 is predicted to have a potential to regulate the two genes accordingly.

Figure 4. The web user interface of RegNetwork.
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relationships are derived from. The query results can be ex-

ported as a CSV file. The users can employ some tools such

as Sig2BioPax (43) to convert the regulations into the

BioPAX Level 3 format (44). Also, the full datasets are

made available for users to download for further analyses.

Results and discussion

Regulatory networks in human and mouse

By integrating the experimental, inferred or predicted regu-

latory interactions among TFs, miRNAs and genes from a

variety of sources, we developed a database named

RegNetwork as a comprehensive repository for genome-

wide regulatory networks in human and mouse.

RegNetwork contains both transcriptional and post-

transcriptional regulatory relationships, and the interplays

between TF/miRNA and their targets can then be easily

retrieved from the database. In addition, the data source

information for the regulatory relationships can also be

retrieved from RegNetwork. As of June 2015, the basic

statistics of the regulatory networks in RegNetwork are

calculated and listed in Table 2. Specifically, the human

regulatory network contains 23 079 nodes and 369 277

edges, consisting of 1456 TFs, 1904 miRNAs and 19 719

target genes; and the mouse regulatory network contains

20 738 nodes and 323 636 edges, consisting of 1328 TFs,

1290 miRNAs and 18 120 target genes. For details of how

to use expression data to identify subnetworks from the

background network under specific conditions, the inter-

ested reader is referred to Liu et al. (9).

Network analysis

Real biological networks such as gene regulatory networks

and protein–protein interaction networks are different

from random networks (45) in terms of certain network

properties like characteristic path length and node degree

distribution (40, 46). Therefore, network feature analysis

allows us to assess whether a network is random or not.

Some network feature indices for the established regula-

tory network for human and mouse from RegNetwork are

summarized in Table 3. Particularly, the clustering coeffi-

cients of the established regulatory networks in human and

mouse are 0.118 and 0.101, respectively, which are much

higher than that of random networks of a comparable size

(�1:5� 10�5) (45). Moreover, the characteristic path

lengths of the regulatory networks in human and mouse

are 3.200 and 3.229, respectively, which are comparatively

small, and thus suggest a quick propagation of regulatory

information in a non-random manner. All other network

topological properties also suggest that the established

regulatory networks for human and mouse are different

from random networks (45, 46).

Second, the node degrees of the established networks

are calculated and found to satisfy the power law distribu-

tions as shown in Figure 5. Fitting the power law model

y ¼ a � x�c, where y denotes the number of nodes and x de-

notes the node degree, we obtain ĉ ¼ 2:179 for the human

regulatory network and ĉ ¼ 2:137 for the mouse

Table 2. The basic statistics of the regulatory networks of human and mouse in RegNetwork

Element Description Number

Human Mouse

Node All nodes included in the regulatory network 23 079 20 738

Edge All regulatory relationships included in the regulatory network 369 277 323 636

TF The documented TFs included in the regulatory network 1456 1328

miRNA The miRNAs included in the regulatory network 1904 1290

Gene The target genes included in the regulatory network 19 719 18 120

TF–gene The ‘TF–gene’ regulations included in the regulatory network 149 841 94 876

TF–TF The ‘TF’–‘TF gene’ self-regulations included the regulatory network 361 129

TF–miRNA The ‘TF–miRNA gene’ regulations included in the regulatory network 21 744 25 574

miRNA–gene The ‘miRNA–target gene’ regulations included in the regulatory network 171 477 176 512

miRNA–TF The ‘miRNA–TF gene’ regulations included in the regulatory network 25 854 26 545

Table 3. Selected measures in the established regulatory net-

works for human and mouse

Parameter Value

Human Mouse

Clustering coefficient 0.118 0.101

Connected components 3 1

Network diameter 8 8

Shortest paths 42 727 382 36 743 196

Characteristic path length 3.200 3.229

Average number of neighbors 31.391 30.548

The definitions of these measures are the same as in Refs. (43, 45).
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regulatory network. Since 2�ĉ�3, our background net-

works are scale-free (45, 46). The network parameters pro-

vide evidence that our integrated regulatory networks are

different from randomly generated networks. Notice that

we employ the definition of random network in (45).

A formal and rigorous comparison between the large

human/mouse networks derived from our RegNetwork

and the corresponding random networks require the use of

computing-intensive Monte Carlo approaches, which is be-

yond the score of this paper.

Figure 5. The node degree distributions of the established regulatory networks in human (A) and mouse (B). A power law distribution in the form of y

¼ a � x�c is fitted in each subfigure, respectively. The results show that the node degrees satisfy the power-law distribution, i.e.

y ¼ a � x�c ¼ 126697 � x�2:179, R2 ¼ 0:845 in human, y ¼ a � x�c ¼ 99838 � x�2:137, R2 ¼ 0:859 in mouse.

Figure 6. The regulatory relationships of a KEGG gene set for the human T cell receptor signaling pathway in RegNetwork. TF, miRNA and gene are

in different colors and the transcriptional and post-transcriptional interplays are shown in red and blue, respectively.
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Interplays among TF, miRNA and gene

Different from the existing regulatory relationship data-

bases such as TRED (47), RegNetwork contains both the

transcriptional and post-transcriptional regulatory inter-

actions, which allows us to investigate more complex inter-

plays between regulators (i.e. TF and miRNA) and their

target genes. Figure 6 illustrates the collected interactions

from a KEGG gene set involved in the T cell signaling path-

way in human, where the post-transcriptional regulatory

relationships are drawn as blue lines. Since network motif

is an important local property and functional block of

complex network, here we identify the three-node network

motifs (‘TF-miRNA-gene’) in the established regulatory

networks. Figure 6 clearly suggests the combinatorial con-

trol of gene expressions mediated by TFs and miRNAs sim-

ultaneously. For instance, visually we can identify several

network motifs in Figure 6, such as ‘FOS’-‘hsa-miR-569’-

‘MAPK12’ and ‘JUN’-‘hsa-let-7a’-‘PAK1’, which are

believed to be the major network building components and

functional blocks in regulatory networks (48). By this sim-

ple example, we show that RegNetwork is a useful tool for

querying the knowledge-based combinatorial regulatory

relationships in both transcription and post-transcription.

Actually, using the network motif detection algorithm,

FANDOM (49), we can identify all the three-node motifs

‘TF-miRNA-gene’ in the human and mouse regulatory net-

works, respectively. Table 4 lists their occurrence frequen-

cies and the statistical significance in the form of Z-scores.

Ten types of ‘TF-miRNA-gene’ motifs are identified in the

two networks. For each type of the motifs, the Z-score is

calculated as the difference of its actual occurrence fre-

quency and the average of its occurrence frequencies in

100 random networks of the same node-size, normalized

by the standard deviation of these random occurrence fre-

quencies, and the motifs with a Z-score higher than 2 are re-

garded as significantly enriched according to FANDOM

(49). As shown in Table 4, ‘M1’, ‘M2’, ‘M3’, ‘M5’ and ‘M7’

are enriched in both human and mouse regulatory networks;

‘M10’ are enriched in one of them, and motifs ‘M4’, ‘M6’,

‘M8’ and ‘M9’ are not enriched in either of them. The en-

richment of different types of motifs suggests a major topo-

logical and statistical change in the local network structures,

which is of significant scientific interest and a promising re-

search approach for understanding context-specific (e.g. cer-

tain disease) regulatory machineries (31).

Conclusion

In this article, we developed a database, RegNetwork, of

the knowledge-based genome-wide regulatory networks in

human and mouse by integrating various data sources. A

comprehensive set of interplays among TFs, miRNAs and

target genes were collected and reorganized for public ac-

cess. The established regulatory networks from

RegNetwork provide genome-wide regulatory interactions,

which lay an initial foundation and establish a prior back-

ground network to identify or verify molecular and func-

tional regulations in pathways or subnetworks

corresponding to different phenotypes. Also, combined

with high-throughput expression data under specific

physiological and developmental conditions (e.g. viral

Table 4. The three-node network motifs ‘TF–miRNA–gene’ in

human and mouse regulatory networks

ID Motif Species Occurrence Z-Score

M1 Human 2047 23.563

Mouse 23 658 24.56

M2 Human 28 872 8.223

Mouse 1 634 783 33.479

M3 Human 41 022 4.013

Mouse 304 806 21.131

M4 Human 107 732 �3.773

Mouse 165 549 �24.261

M5 Human 133 350 3.631

Mouse 3 432 863 24.996

M6 Human 1 064 231 �3.329

Mouse 1 265 834 �0.118

M7 Human 1 394 809 2.350

Mouse 16 468 173 26.746

M8 Human 30 678 �0.889

Mouse 1 566 498 �0.235

M9 Human 4763 0.801

Mouse 50 725 �0.397

M10 Human 142 241 0.570

Mouse 688 517 14.223

The motifs are ranked by the absolute Z-Scores of network motifs in

human. The higher the Z-Score, the more enriched is a motif (threshold is 2 as

suggested in FANDOM (47)).
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infection), one can identify differential subnetworks and

pathways from the background networks in RegNetwork,

which will lead to novel and interesting insights into regu-

latory mechanisms in context-specific processes.

At the time when the current version of RegNetwork was

developed, the ENCODE project published thousands of

regulatory interactions in human inferred from high-

throughput datasets (50), which contains 162 100 regulatory

relationships among 119 TFs, 736 miRNAs and 15 131

genes. Most of the TFs, miRNAs and genes in ENCODE

(96.5% of the regulators and 89.9% of the targets) are al-

ready included in our database. We will continue to track

and regularly integrate the ENCODE regulatory relation-

ships into our database. We also recognize the usefulness of

text mining tools to identify and curate the regulatory rela-

tionships from literature, which is another direction to ex-

tend the RegNetwork. We also plan to extend the

RegNetwork to include additional information such as the

experimental conditions and original references for each of

the regulatory relationships that are derived from. We will

also extend the RegNetwork to include other organisms,

such as Rattus norvegicus (rat), Drosophila melanogaster

(fruit fly), Caenorhabditis elegans (worm), Escherichia coli

(E. coli) and Saccharomyces cerevisiae (yeast).
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